Facile Conversion of $\left[\left(\boldsymbol{\eta}^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}\right]\left[1-\mathrm{Et}-\mathrm{CB}_{11} \mathrm{~F}_{11}\right]$ into the Nonclassical Rhodium(I) Carbonyl $\left[\mathbf{R h}(\mathbf{C O})_{4}\right]\left[1-E t-\mathrm{CB}_{11} \mathrm{~F}_{11}\right]$

Anthony J. Lupinetti, Matthew D. Havighurst, Susie M. Miller, Oren P. Anderson, and Steven H. Strauss*

Department of Chemistry, Colorado State University Fort Collins, Colorado 80523

Received October 11, 1999

Nonclassical metal carbonyls are most simply defined as those exhibiting $\nu(\mathrm{CO})_{\text {ave }}>2143 \mathrm{~cm}^{-1} .{ }^{1}$ Their recent study has led to new insights into $\mathrm{M}-\mathrm{C} \equiv \mathrm{O}$ bonding ${ }^{1 \mathrm{lc}, 2}$ and to catalysts for organic transformations. ${ }^{3}$ Although few in number (ca. 250 are known as of this writing), they include metals from all regions of the periodic table. ${ }^{1,4}$ We report the isolation, vibrational spectra, and structures of crystalline $1-\mathrm{Et}^{-} \mathrm{CB}_{11} \mathrm{~F}_{11}{ }^{-}$salts of the $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}-$ $(\mathrm{CO})_{2}{ }^{+}$and $\mathrm{Rh}(\mathrm{CO})_{4}^{+}$cations and the facile conversion of $\left(\eta^{6}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}$to $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$under a CO atmosphere. The lability of the π-arene ligand, noted previously for $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}$ in the presence of donor solvents such as acetone, ${ }^{5}$ should allow $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}$to become a valuable synthon for models of the important gem-dicarbonyl surface species $\mathrm{Rh}^{\mathrm{I}}(\mathrm{CO})_{2} / \mathrm{Al}_{2} \mathrm{O}_{3} .{ }^{6}$ The $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$cation, with $v(\mathrm{CO})_{\text {ave }}=2167 \mathrm{~cm}^{-1}$, is the first isolable nonclassical rhodium carbonyl complex. It was recently generated in a $\mathrm{Ne} / \mathrm{CO}$ matrix, along with $\mathrm{Rh}(\mathrm{CO})^{+}, \mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}$, and $\mathrm{Rh}(\mathrm{CO})_{3}{ }^{+}$, in an important study by Zhou and Andrews. ${ }^{7}$

In 1982, Valderrama and Oro reported that the reaction of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ with AgPF_{6} in acetone containing hexamethylbenzene produced a mixture containing $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}$and $\mathrm{Rh}-$ $(\mathrm{CO})_{2}(\text { acetone })_{2}{ }^{+.5}$ The crystalline solid $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}\right]-$ [PF_{6}] was obtained, but its structure has not been reported. We now report that treatment of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ with $\operatorname{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{Y})^{8}$ $\left(\mathrm{Y}^{-}=1-\mathrm{Et}^{-} \mathrm{CB}_{11} \mathrm{~F}_{11}{ }^{-}\right)$in dichloromethane under a nitrogen atmosphere resulted in the precipitation of AgCl and the formation

[^0]

Figure 1. The structure of one of the two nearly identical $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)-$ $\mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}$cations in $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}\right]\left[1-\mathrm{Et}-\mathrm{CB}_{11} \mathrm{~F}_{11}\right](50 \%$ ellipsoids except for hydrogen atoms (arbitary size)). Selected interatomic distances (\AA) and angles (deg): Rh1-C1, 1.874(9); Rh1-C2, 1.895(9); C1-RhC2, 89.3(4); C1-O1, 1.134(9); C2-O2, 1.116(9); Rh1-C-O, 177.8(8) and 177.9(7); Rh1-C5, 2.270(7); Rh1-C6, 2.364(8); Rh1-C7, 2.343(7); Rh1-C8, 2.263(7); Rh1-C9, 2.337(7); Rh1-C10, 2.335(7).
of a yellow-orange solution, ${ }^{9}$ which upon cooling to $-18{ }^{\circ} \mathrm{C}$ yielded crystals of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}\right][\mathrm{Y}]$ suitable for diffraction. The structure of one of the two virtually identical $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}$ $(\mathrm{CO})_{2}{ }^{+}$cations present in the asymmetric unit is shown in Figure $1 .{ }^{10}$ The $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}$cations have idealized $C_{2 v}$ symmetry. The structure of the Y^{-}anion is normal. ${ }^{11}$ There are no $\mathrm{Rh} \cdots \mathrm{F}$ contacts shorter than $3.6 \AA$ and no $\mathrm{C} \cdots \mathrm{F}$ or $\mathrm{O} \cdots \mathrm{F}$ contacts shorter than $2.9 \AA$. The two equal-intensity $v(\mathrm{CO})$ bands observed at 2115 $\left(\mathrm{A}_{1}\right)$ and $2065\left(\mathrm{~B}_{2}\right) \mathrm{cm}^{-1}$ for $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}\right][\mathrm{Y}]$ are consistent with the $\sim 90^{\circ} \mathrm{C}-\mathrm{Rh}-\mathrm{C}$ angle for the two $\mathrm{Rh}(\mathrm{CO})_{2}$ moieties.

Whether $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}$or $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}$undergo photoassisted loss of CO and subsequent alkane activation, similar to $\mathrm{Rh}^{\mathrm{I}}(\mathrm{CO})_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CpRh}(\mathrm{CO})_{2}$, and $\mathrm{Cp} * \mathrm{Rh}(\mathrm{CO})_{2},{ }^{6,12}$ remains to be seen. Unlike $\mathrm{Rh}^{\mathrm{I}}(\mathrm{CO})_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CpRh}(\mathrm{CO})_{2}$, and $\mathrm{Cp} * \mathrm{Rh}(\mathrm{CO})_{2}$, $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}\right][\mathrm{Y}]$ reacted with 1 atm of CO in the solid state, resulting in the loss of the η^{6}-benzene ligand and the formation of $\left[\mathrm{Rh}(\mathrm{CO})_{4}\right][\mathrm{Y}]$, containing the $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$cation, according to the following equation:

$$
\begin{aligned}
{\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}\right][\mathrm{Y}](\mathrm{s})+2 \mathrm{CO}(\mathrm{~g}) \xrightarrow{25^{\circ} \mathrm{C}} } \\
{\left[\mathrm{Rh}(\mathrm{CO})_{4}\right][\mathrm{Y}](\mathrm{s})+\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g}) }
\end{aligned}
$$

This unexpected reaction was monitored by attenuated total reflectance (ATR) FTIR spectroscopy. When a thin film of [$\left(\eta^{6}\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}\right][\mathrm{Y}]$ was deposited by evaporation from a dichloromethane solution on the silicon crystal of an ASI SiComp ATRFTIR probe and treated with 1 atm of CO, the bands at 2115, 2065 , and $3108 \mathrm{~cm}^{-1}$ disappeared and were replaced by a single band at $2138 \mathrm{~cm}^{-1}$. The $3108 \mathrm{~cm}^{-1}$ band is assigned to one or more $\nu(\mathrm{CH})$ normal modes of the η^{6}-benzene ligand; the 2138 cm^{-1} band is the $\mathrm{E}_{\mathrm{u}} v(\mathrm{CO})$ band of $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$(see below). The reaction proceeded over several hours at 1 atm of CO ; it was considerably faster at elevated pressure.

The crystalline compound $\left[\mathrm{Rh}(\mathrm{CO})_{4}\right][\mathrm{Y}]$ was independently prepared by treating $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ with benzene-free AgY^{8} in

[^1]

Figure 2. Structure of $\left[\mathrm{Rh}(\mathrm{CO})_{4}\right]\left[1-\mathrm{Et}-\mathrm{CB}_{11} \mathrm{~F}_{11}\right]$, showing one $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$ cation and the two carborane anions that weakly interact with it (50% ellipsoids except for hydrogen atoms (arbitary size)). Selected interatomic distances (\AA) and angles (deg): Rh-C1, 1.947(6); Rh-C2, 1.949(6); $\mathrm{Rh}-\mathrm{C} 3,1.958(6) ; \mathrm{Rh}-\mathrm{C} 4,1.951(6) ; \mathrm{C}-\mathrm{Rh}-\mathrm{C}, 88.8(2)-90.9(2)$, 177.3(3), and 178.9(2); $\mathrm{C}-\mathrm{O}, 1.109(7)-1.124(7)$; $\mathrm{Rh}-\mathrm{C}-\mathrm{O}, 177.3(5)-178.8-$ (5); Rh $\cdots \mathrm{H} 7 \mathrm{C}, 3.21$; Rh $\cdots \mathrm{F} 2$, 3.588(9); Rh $\cdots \mathrm{F} 6,3.234(9) ; \mathrm{Rh} \cdots 9^{\prime}$, 3.420(9); Rh‥F10', 3.399(9); Rh‥F12', 3.220(9).
dichloromethane under a nitrogen atmosphere, removing AgCl by filtration, and treating the yellow-orange filtrate with 1 atm of CO. ${ }^{9}$ The structure of this salt is shown in Figure $2 .{ }^{13}$ The $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$cation has idealized $D_{4 h}$ symmetry. The structure of the Y^{-}anion is normal. ${ }^{11}$ There are no $\mathrm{Rh} \cdots \mathrm{F}$ contacts shorter than $3.2 \AA$ and no $\mathrm{C} \cdots \mathrm{F}$ or $\mathrm{O} \cdots \mathrm{F}$ contacts shorter than $2.8 \AA$. Interestingly, there appears to be a $\mathrm{Rh} \cdots \mathrm{H}(\mathrm{C})$ contact of $3.21 \AA$ with one of the hydrogen atoms of the carborane methyl group; the possible significance of this with respect to $\mathrm{C}-\mathrm{H}$ activation is under further investigation. The four $\mathrm{Rh}-\mathrm{CO}$ distances range from $1.946(6)$ to $1.958(6) \AA$, significantly longer than the distances in $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}$and more than 0.1 A longer than typical $\mathrm{Rh}^{\mathrm{I}}-\mathrm{CO}$ distances. ${ }^{14} \mathrm{~A}$ similar lengthening was observed for the tetrahedral $\mathrm{Cu}(\mathrm{CO})_{4}{ }^{+}$cation. ${ }^{10}$ In that case, the $\mathrm{Cu}-\mathrm{CO}$ distances ranged from 1.961 (3) to $1.968(3) \AA$, much longer than typical $\mathrm{Cu}^{\mathrm{I}}-\mathrm{CO}$ distances of $1.78-1.85 \AA$. Long $\mathrm{M}-\mathrm{CO}$ bonds, greatly attenuated $\mathrm{M} \rightarrow \mathrm{CO} \pi$ back-bonding, and unusually high $v(\mathrm{CO})$ values are the hallmarks of nonclassical metal carbonyls, ${ }^{1,4,15}$ many (but not all) of which are homoleptic noble-metal carbonyl cations such as $\mathrm{Cu}(\mathrm{CO})_{4}{ }^{+},{ }^{11} \mathrm{Ag}(\mathrm{CO})_{2}{ }^{+},{ }^{15 \mathrm{c}} \mathrm{Au}(\mathrm{CO})_{2}{ }^{+},{ }^{15 a, b}$

[^2]$\mathrm{Pd}(\mathrm{CO})_{4}{ }^{2+},{ }^{15 \mathrm{~d}}$ and $\mathrm{Fe}(\mathrm{CO})_{6}{ }^{2+}$. ${ }^{15 \mathrm{e}}$ Despite the lack of significant π back-bonding, the $\mathrm{M}-\mathrm{CO}$ bonds in these species are relatively strong because of the very polar σ bonds with a significant electrostatic contribution. ${ }^{1,2,4}$

The Raman (R) and IR spectra of $\left[\mathrm{Rh}(\mathrm{CO})_{4}\right][\mathrm{Y}]$ exhibited $v(\mathrm{CO})$ bands at $2215(\mathrm{R}), 2176(\mathrm{R})$, and $2138 \mathrm{~cm}^{-1}(\mathrm{IR})$. These bands are assigned to the $A_{1 g}, B_{2 g}$, and $\mathrm{E}_{\mathrm{u}} \mathrm{C}-\mathrm{O}$ stretching normal modes of the square-planar $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$cation; they can be compared with the corresponding bands for the isoelectronic Pd(CO) ${ }_{4}{ }^{2+}$ dication, ${ }^{15 \mathrm{~d}}$ which are $2279(\mathrm{R}), 2263(\mathrm{R})$, and $2248 \mathrm{~cm}^{-1}$ (IR). The difference in $v(\mathrm{CO})_{\text {ave }}$ values for these two species, 66 cm^{-1}, is larger than the $44 \mathrm{~cm}^{-1}$ difference for $\mathrm{Au}(\mathrm{CO})_{2}{ }^{+} / \mathrm{Hg}-$ $(\mathrm{CO})_{2}{ }^{2+14 a, 16}$ but is considerably smaller than the 95 and $144 \mathrm{~cm}^{-1}$ differences for $\operatorname{Re}(\mathrm{CO})_{6}{ }^{+} / \mathrm{Os}(\mathrm{CO})_{6}{ }^{2+17}$ and $\mathrm{Ni}(\mathrm{CO})_{4} / \mathrm{Cu}(\mathrm{CO})_{4}{ }^{+},{ }^{11}$ respectively. The IR band at $2138 \mathrm{~cm}^{-1}$ for $\mathrm{d}^{8} \mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$can also be compared with the IR bands for $\mathrm{d}^{9} \mathrm{Rh}(\mathrm{CO})_{4}{ }^{\circ}, 2019$ and/or $2010 \mathrm{~cm}^{-1}, 7,18$ and $\mathrm{d}^{10} \mathrm{Rh}(\mathrm{CO})_{4}^{-}, 1900-1906 \mathrm{~cm}^{-1} .7,19$

Zhou and Andrews recently reported the IR $\nu(\mathrm{CO})$ bands for $\mathrm{Rh}(\mathrm{CO})_{n}{ }^{+}$cations in solid Ne at ca. $4 \mathrm{~K}(n=1-4):^{7} \mathrm{Rh}(\mathrm{CO})^{+}$, $2174 \mathrm{~cm}^{-1} ; \mathrm{Rh}(\mathrm{CO})_{2}{ }^{+}, 2185 \mathrm{~cm}^{-1} ; \mathrm{Rh}(\mathrm{CO})_{3}{ }^{+}, 2168 \mathrm{~cm}^{-1} ; \mathrm{Rh}-$ $(\mathrm{CO})_{4}^{+}, 2162 \mathrm{~cm}^{-1}$. The difference between their $\mathrm{E}_{\mathrm{u}} v(\mathrm{CO})$ value for $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}, 2162 \mathrm{~cm}^{-1}$, and our value, $2138 \mathrm{~cm}^{-1}$, might be due to the weak Rh $\cdots \mathrm{F}$ and/or $\mathrm{Rh} \cdots \mathrm{H}$ interactions present in solid $\left[\mathrm{Rh}(\mathrm{CO})_{4}\right][\mathrm{Y}]$. The trend in IR $v(\mathrm{CO})$ values for these d^{8} cations is the opposite of the trend observed for the series of d^{10} cations $\mathrm{Cu}(\mathrm{CO})^{+}\left(2178 \mathrm{~cm}^{-1}\right),{ }^{20} \mathrm{Cu}(\mathrm{CO})_{2}{ }^{+}\left(2164 \mathrm{~cm}^{-1}\right),{ }^{20} \mathrm{Cu}(\mathrm{CO})_{3}{ }^{+}$ $\left(2179 \mathrm{~cm}^{-1}\right),{ }^{20}$ and $\mathrm{Cu}(\mathrm{CO})_{4}{ }^{+}\left(2183 \mathrm{~cm}^{-1}\right)^{11}$ despite the fact that all of these $v(\mathrm{CO})$ values are $2160 \pm 23 \mathrm{~cm}^{-1}$. This trend reversal will no doubt be studied by theorists who are interested in nonclassical metal carbonyls.

Finally, the isolation of the $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$cation, which was only possible because of the low basicity of the superweak anion 1-Et$\mathrm{CB}_{11} \mathrm{~F}_{11^{-},{ }^{-21}}$ will allow us to test the 1984 prediction of Saillard and Hoffmann that $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$will bind H_{2} to form a $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{-}$ $\left(\mathrm{H}_{2}\right)^{+}$complex with $C_{2 v}$ symmetry. ${ }^{22}$ This and other experiments with the compounds $\left[\left(\eta^{6}\right.\right.$-arene $\left.) \mathrm{Rh}(\mathrm{CO})_{2}\right][\mathrm{Y}]$ and $\left[\mathrm{Rh}(\mathrm{CO})_{4}\right][\mathrm{Y}]$ and their cobalt and iridium homologues are in progress.

Acknowledgment. This research was supported by NSF grant CHE9905482. We also thank Callery Chemical Company for a sample of $\mathrm{B}_{10} \mathrm{H}_{14}$ and the NIH Shared Instrumentation Grant Program for the SMART X-ray system.

Note Added in Proof: After this paper was submitted, we became aware of two reports of the generation of $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{+}$in neat $\mathrm{HSO}_{3} \mathrm{~F}$: Souma, Y.; Xu, Q. personal communication; Bach, C. Ph.D. Thesis, University of Hannover, 1999.

Supporting Information Available: Synthetic details, Figure S-1, showing the IR spectrum and two views of the structure of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right.$ -$\left.\mathrm{Rh}(\mathrm{CO})_{2}\right]\left[1-\mathrm{Et}^{2}-\mathrm{CB}_{11} \mathrm{~F}_{11}\right]$, and Tables $\mathrm{S}-1$ to $\mathrm{S}-10$, listing crystallographic parameters and results for $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}\right]\left[1-{\left.\mathrm{Et}-\mathrm{CB}_{11} \mathrm{~F}_{11}\right] \text { and }[\mathrm{Rh}-~}_{\text {- }}\right.$ $\left.(\mathrm{CO})_{4}\right]\left[1-\mathrm{Et}-\mathrm{CB}_{11} \mathrm{~F}_{11}\right]$ (PDF). This information is available free of charge via the Internet at http://pubs.acs.org.

JA993628M

(16) Bodenbinder, M.; Balzer-Jöllenbeck, G.; Willner, H.; Batchelor, R. J.; Einstein, F. W. B.; Wang, C.; Aubke, F. Inorg. Chem. 1996, 35, 82.
(17) Wang, C.; Bley, B.; Balzer-Jöllenbeck, G.; Lewis, A. R.; Siu, S. C.; Willner, H.; Aubke, F. J. Chem. Soc., Chem. Commun. 1995, $20,2071$.
(18) (a) Chenier, J. H. B.; Histed, M.; Howard, J. A.; Joly, H. A.; Morris, H.; Mile, B. Inorg. Chem. 1989, 28, 4114. (b) Bytheway, I.; Wong, M. W. Chem. Phys. Lett. 1998, 282, 219.
(19) (a) Chini, P.; Martinenego, S. Inorg. Chim. Acta 1969, 3, 21. (b) Vidal, J. L.; Walker, W. E. Inorg. Chem. 1981, 20, 249.
(20) Rack, J. J.; Webb, J. D.; Strauss, S. H. Inorg. Chem. 1996, 35, 277. (21) Lupinetti, A. J.; Strauss, S. H. Chemtracts-Inorg. Chem. 1998, 11, 565.
(22) Saillard, J.-Y.; Hoffmann, R. J. Am. Chem. Soc. 1984, 106, 2006.

[^0]: (1) (a) Strauss, S. H. Chemtracts-Inorg. Chem. 1997, 10, 777. (b) Lupinetti, A. J.; Frenking, G.; Strauss, S. H. Angew. Chem., Int. Ed. 1998, 37, 2113. (c) Lupinetti, A. J.; Frenking, G.; Strauss, S. H. Prog. Inorg. Chem. In press. (d) Strauss, S. H. J. Chem. Soc., Dalton Trans. In press.
 (2) Leading references: (a) Merchán, M.; Nebot-Gil, I.; González-Luque, R.; Ortí, E. J. Chem. Phys. 1987, 87, 1690. (b) Mavridis, A.; Harrison, J. F.; Allison, J. J. Am. Chem. Soc. 1989, 111, 2482. (c) Barnes, L. A.; Rosi, M.; Bauschlicher, C. W. J. Chem. Phys. 1991, 94, 2031. (d) Lynn, M. A.; Bursten, B. E. Inorg. Chim. Acta 1995, 229, 437. (e) Goldman, A. S.; Krogh-Jespersen, K. J. Am. Chem. Soc. 1996, 118, 12159. (f) Szilagyi, R. K.; Frenking, G. Organometallics 1997, 16, 4807. (g) Lupinetti, A. J.; Fau, S.; Frenking, G.; Strauss, S. H. J. Phys. Chem. A 1997, 101, 9551. (h) Lupinetti, A. J.; Jonas, V.; Thiel, W.; Strauss, S. H.; Frenking, G. Chem. Eur. J. 1999, 5, 2573. (i) Fau, S.; Frenking, G. Mol. Phys. 1999, 96, 519.
 (3) (a) Tsuda, T.; Isegawa, Y.; Saegusa, T. J. Org. Chem. 1972, 37, 2670. (b) Bregault, J. M.; Jarjour, C.; Yolou, S. J. Mol. Catal. 1978, 4, 225. (c) Souma, Y. Shokubai Gakkai 1987, 29, 317. (d) Waugh, K. C. Catal. Today 1992, 15 , 51. (e) Solomon, E. I.; Jones, P. M.; May, J. A. Chem. Rev. 1993, 93, 2623. (f) Kawasaki, H.; Nakamoto, Y.; Yamamoto, A.; Kato, T.; Yamada, T. Sekiyu Gakkaishi 1994, 37, 529. (g) Xu, Qiang; Imamura, Yuki; Fujiwara, M.; Souma, Y. J. Org. Chem. 1997, 62, 1594. (h) Weber, L.; Barlmeyer, M.; Quasdorff, J.-M.; Sievers, H. L.; Stammler, H.-G.; Neumann, B. Organometallics 1999, 18, 2497. (i) Xu, Q.; Souma, Y.; Umezawa, J.; Tanaka, M.; Nakatani, H. J. Org. Chem. 1999, 64, 6306.
 (4) (a) Aubke, F.; Wang, C. Coord. Chem. Rev. 1994, 137, 483. (b) Weber, L. Angew. Chem., Int. Ed. Engl. 1994, 33, 1077. (c) Zecchina, A.; Scarano, D.; Galletto, P.; Lamberti, C. Nuovo Cimento Soc. Ital. Fis. 1997, 19D, 1773. (d) Willner, H.; Aubke, F. Angew. Chem., Int. Ed. Engl. 1997, 36, 2402.
 (5) Valderrama, M.; Oro, L. A. Can J. Chem. 1982, 60, 1044.
 (6) (a) Wovchko, E. A.; Yates, J. T., Jr J. Am. Chem. Soc. 1998, 120, 10523. (b) Wovchko, E. A.; Yates, J. T., Jr. Langmuir 1999, 15, 3506.
 (7) (a) Zhou, M.; Andrews, L. J. Phys. Chem. A 1999, 103, 7773. (b) Zhou, M.; Andrews, L. J. Am. Chem. Soc. 1999, 121, 9141.
 (8) Ivanov, S. V.; Rockwell, J. J.; Polyakov, O. G.; Gaudinski, C. M.; Anderson, O. P.; Solntsev, K. A.; Strauss, S. H. J. Am. Chem. Soc. 1998, 120, 4224.

[^1]: (9) See Supporting Information for additional details.
 (10) $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Rh}(\mathrm{CO})_{2}\right]\left[1-\mathrm{Et}^{2}-\mathrm{CB}_{11} \mathrm{~F}_{11}\right]$: monoclinic, $P 2_{1} / c, a=25.1687-$ (5) $\AA, b=10.5913(1) \AA, c=16.1831(3) \AA, \beta=102.621(1)^{\circ}, V=4209.7(1)$ $\AA^{3}, Z=8$. Data were collected at $-102(2)^{\circ} \mathrm{C}$ on a Siemens SMART System with Mo $\mathrm{K} \alpha$ radiation to $2 \theta_{\max }=56.54^{\circ}$, giving 9921 unique reflections; the structure was solved by direct methods (Sheldrick, G. M. SHELXTL, v. 5.03, 1994) with full-matrix least-squares refinement on F^{2}, yielding $R_{1}=0.068$ (I $>2 \sigma(I)), w R_{2}=0.150$ (all data).
 (11) Ivanova, S. M.; Ivanov, S. V.; Miller, S. M.; Anderson, O. P.; Solntsev, K. A.; Strauss, S. H. Inorg. Chem. 1999, 38, 3756.
 (12) (a) Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1983, 105, 3929. (b) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1984, 106, 1650. (c) Rest, A. J.; Whitwell, I.; Graham. W. A. G.; Hoyano, J. K.; McMaster, A. D. J. Chem. Soc., Dalton Trans. 1987, 1181.

[^2]: (13) $\left[\mathrm{Rh}(\mathrm{CO})_{4}\right]\left[1-\mathrm{Et}-\mathrm{CB}_{11} \mathrm{~F}_{11}\right]:$ monoclinic, $P 2_{1} / c, a=10.634(3) \AA, b=$ 8.853(3) $\AA, c=20.918(7) \AA, \beta=94.03(2)^{\circ}, V=1964(1) \AA^{3}, Z=4$. Data were collected at $-102(2)^{\circ} \mathrm{C}$ on a Siemens SMART System with Mo K α radiation to $2 \theta_{\text {max }}=56.80^{\circ}$, giving 4769 unique reflections; the structure was solved by direct methods (Sheldrick, G. M. SHELXTL, v. 5.03, 1994) with full-matrix least-squares refinement on F^{2}, yielding $R_{1}=0.055(I>2 \sigma(I))$, $w R_{2}=0.147$ (all data).
 (14) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc., Dalton Trans. Suppl. 1989, S1.
 (15) (a) Willner, H.; Schaebs, J.; Hwang, G.; Mistry, F.; Jones, R.; Trotter, J.; Aubke, F. J. Am. Chem. Soc. 1992, 114, 8972. (b) Seppelt, K. Personal communication. (c) Hurlburt, P. K.; Rack, J. J.; Luck, J. S.; Dec, S. F.; Webb, J. D.; Anderson, O. P.; Strauss, S. H. J. Am. Chem. Soc. 1994, 116, 10003. (d) Hwang, G.; Wang, C.; Aubke, F.; Willner, H.; Bodenbinder, M. Can. J. Chem. 1993, 71, 1532. (e) Bernhardt, E.; Bley, B.; Wartchow, R.; Willner, H.; Bill, E.; Kuhn, P.; Sham, I. H. T.; Bodenbinder, M.; Bröchler, R.; Aubke, F. J. Am. Chem. Soc. 1999, 121, 7188.

